Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 15(3): 1618-1629, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38495697

RESUMO

Extended depth-of-focus (EDoF) intraocular lenses (IOLs) are typically evaluated using commercially available aberrometers. Given the intricate optical design of these IOLs, employing an appropriate wavefront reconstruction method with a sufficient sampling resolution of the aberrometer is crucial. A high-resolution Shack-Hartmann wavefront sensor was developed by magnifying the pupil aperture by a factor of five onto a lenslet array (pitch: 133 µm) and utilizing a full-frame CMOS sensor (24 by 36 mm), resulting in a 26.6 µm sampling resolution. Zonal wavefront reconstruction was used and compared with Zernike-based modal wavefront reconstruction to retain detailed local slope irregularities. Four refractive EDoF IOLs with a power of 20D were examined, and the wavefront difference between the zonal and modal methods, expressed as the root mean squared error (RMSE), remained significant for two of the IOLs up to the 16th-order Zernike spherical aberrations (SAs). Conversely, a negligibly small RMSE was observed for the other two IOLs, as long as the Zernike SAs were higher than the 6th order. The raytracing simulation results from the zonal wavefronts exhibited a stronger correlation with the results of recent optical bench studies than those from the modal wavefronts. The study suggests that certain recent refractive EDoF IOLs possess a complex optical profile that cannot be adequately characterized by limited orders of SAs.

2.
Invest Ophthalmol Vis Sci ; 51(12): 6858-67, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20688730

RESUMO

PURPOSE: Adaptive optics scanning laser ophthalmoscopy (AOSLO) under optimized wavefront correction allows for routine imaging of foveal cone photoreceptors. The intersubject variability of foveal cone density was measured and its relation to eye length evaluated. METHODS: AOSLO was used to image 18 healthy eyes with axial lengths from 22.86 to 28.31 mm. Ocular biometry and an eye model were used to estimate the retinal magnification factor. Individual cones in the AOSLO images were labeled, and the locations were used to generate topographic maps representing the spatial distribution of density. Representative retinal (cones/mm(2)) and angular (cones/deg(2)) cone densities at specific eccentricities were calculated from these maps. RESULTS: The entire foveal cone mosaic was resolved in four eyes, whereas the cones within 0.03 mm eccentricity remained unresolved in most eyes. The preferred retinal locus deviated significantly (P < 0.001) from the point of peak cone density for all except one individual. A significant decrease in retinal density (P < 0.05) with increasing axial length was observed at 0.30 mm eccentricity but not closer. Longer, more myopic eyes generally had higher angular density near the foveal center than the shorter eyes, but by 1°, this difference was nullified by retinal expansion, and so angular densities across all eyes were similar. CONCLUSIONS: The AOSLO can resolve the smallest foveal cones in certain eyes. Although myopia causes retinal stretching in the fovea, its effect within the foveola is confounded by factors other than cone density that have high levels of intersubject variability.


Assuntos
Olho/anatomia & histologia , Fóvea Central/citologia , Células Fotorreceptoras Retinianas Cones/citologia , Adulto , Biometria , Pesos e Medidas Corporais , Contagem de Células , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Oftalmoscopia , Reprodutibilidade dos Testes , Inquéritos e Questionários , Adulto Jovem
3.
Proc Am Control Conf ; 2009: 3848-3853, 2009 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-20454552

RESUMO

We compared four algorithms for controlling a MEMS deformable mirror of an adaptive optics (AO) scanning laser ophthalmoscope. Interferometer measurements of the static nonlinear response of the deformable mirror were used to form an equivalent linear model of the AO system so that the classic integrator plus wavefront reconstructor type controller can be implemented. The algorithms differ only in the design of the wavefront reconstructor. The comparisons were made for two eyes (two individuals) via a series of imaging sessions. All four controllers performed similarly according to estimated residual wavefront error not reflecting the actual image quality observed. A metric based on mean image intensity did consistently reflect the qualitative observations of retinal image quality. Based on this metric, the controller most effective for suppressing the least significant modes of the deformable mirror performed the best.

4.
J Opt Soc Am A Opt Image Sci Vis ; 24(5): 1358-63, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17429481

RESUMO

In making noninvasive measurements of the human cone mosaic, the task of labeling each individual cone is unavoidable. Manual labeling is a time-consuming process, setting the motivation for the development of an automated method. An automated algorithm for labeling cones in adaptive optics (AO) retinal images is implemented and tested on real data. The optical fiber properties of cones aided the design of the algorithm. Out of 2153 manually labeled cones from six different images, the automated method correctly identified 94.1% of them. The agreement between the automated and the manual labeling methods varied from 92.7% to 96.2% across the six images. Results between the two methods disagreed for 1.2% to 9.1% of the cones. Voronoi analysis of large montages of AO retinal images confirmed the general hexagonal-packing structure of retinal cones as well as the general cone density variability across portions of the retina. The consistency of our measurements demonstrates the reliability and practicality of having an automated solution to this problem.


Assuntos
Algoritmos , Inteligência Artificial , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão/métodos , Células Fotorreceptoras Retinianas Cones/anatomia & histologia , Retinoscopia/métodos , Análise por Conglomerados , Humanos , Lentes , Reprodutibilidade dos Testes , Retinoscópios , Sensibilidade e Especificidade
5.
Opt Express ; 14(25): 12552-9, 2006 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-19529690

RESUMO

A reliable and objective method to measure aberration changes due to the tear film is essential in improving clinical assessment of the tear film and in vivo retinal imaging. The tear film of 11 subjects are studied by acquiring continuous wavefront measurements in real-time with a customized Shack-Hartmann wavefront sensor. The device has a high resolution lenslet array (190 mum) and a topographer unit with an infrared pupil illuminator (940 nm). A Fourier transform reconstructor algorithm [1] was used to estimate the eyes' wavefront aberrations from slope measurements. Increasing irregularities in the tear film produced observable wavefront variations. The temporal behavior of tear induced aberrations and retinal image quality was evaluated by the root mean squared (RMS) error of the residual wavefront and the volume modulation transfer function (MTF). Similar trends were observed from both metrics. Our analysis demonstrates the applicability of the SH wavefront sensor to assessing the dynamics of the human tear film.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...